<table id="qrkot"><ruby id="qrkot"></ruby></table>
  1. <acronym id="qrkot"></acronym>
  2. <tr id="qrkot"><s id="qrkot"></s></tr>
  3. <table id="qrkot"><option id="qrkot"></option></table>
  4. <big id="qrkot"><ruby id="qrkot"></ruby></big>
  5. <track id="qrkot"></track>
    蘇州混凝土水泥制品研究院有限公司

    頭部文案

    發布時間:2020-01-06 00:00:00
    全國建材科技期刊
    全國中文核心期刊
    中國科技論文統計源期刊
    萬方數據-數字化期刊群入網期刊
    中國學術期刊(光盤版)全文收錄期刊
    華東地區優秀科技期刊
    江蘇省期刊方陣“雙效期刊”
    中國期刊網全文收錄期刊
    中國科技期刊數據庫全文收錄期刊

    全部文章

    纖維水泥及制品

    高溫后PVA纖維增強水泥基復合材料力學性能試驗研究
    高溫后PVA纖維增強水泥基復合材料力學性能試驗研究
    • 楊 珊1,李 祚1,彭林欣1,2,羅月靜3,4,滕曉丹1,2,5
    2021年第4期
    摘要
    引用本文
    摘 ? 要:對經過100 ℃、200 ℃、400 ℃、600 ℃高溫處理后的聚乙烯醇纖維增強水泥基復合材料(PVA-ECC)進行了單軸壓縮試驗、單軸拉伸試驗、剪切試驗和四點彎曲試驗,對不同溫度下的試驗結果進行了對比分析,擬合了高溫后PVA-ECC各項性能的退化曲線,并通過掃描電鏡觀察了微觀結構。結果表明:PVA-ECC在常溫下能夠表現出良好的變形能力;當溫度由常溫升至100 ℃時,抗壓強度大幅下降,繼續升至200 ℃時則有一定提高;當溫度超過200 ℃以后,抗壓強度、抗拉強度和極限拉應變均降低,試件由延性破壞變為脆性破壞;常溫下,PVA-ECC試件表面密實完整,經過400 ℃高溫處理后,試件呈現出稀疏多孔結構,溫度超過600 ℃時,試件表面呈片狀、海綿狀形態。 Abstract: Uniaxial compression, uniaxial tensile, shearing and four-point bending tests were carried out on polyvinyl alcohol fiber reinforced cement-based composite materials (PVA-ECC) after high temperature treatment at 100 ℃, 200 ℃, 400 ℃ and 600 ℃. The test results at different temperatures were compared and analyzed, the degradation curves of various properties of PVA-ECC after high temperature were deduced, and the microstructure was observed by scanning electron microscope. The results show that PVA-ECC has good deformation capacity at room temperature. When the temperature rises from room temperature to 100 ℃, the compressive strength decreases greatly, and then increases to a certain extent when it continues to rise to 200 ℃. When the temperature exceeds 200 ℃, the compressive strength, tensile strength and ultimate tensile strain of PVA-ECC are reduced, and the specimen changes from ductile failure to brittle failure. At room temperature, the surface of PVA-ECC is dense and complete. After being treated at 400 ℃, the specimen exhibits a sparse porous structure. When the temperature exceeds 600 °C, the surface of the specimen becomes flake and sponge.
    楊珊,李祚,彭林欣,等.高溫后PVA纖維增強水泥基復合材料力學性能試驗研究[J].混凝土與水泥制品,2021(4):49-54. YANG S,LI Z,PENG L X,et al.Study on Mechanical Properties of PVA-ECC Composites After Elevated Temperature[J].CHINA CONCRETE AND CEMENT PRODUCTS,2021(4):49-54.
    混雜纖維輕骨料混凝土力學與導熱性能研究
    混雜纖維輕骨料混凝土力學與導熱性能研究
    • 黃曉雯,龐建勇,王鳳瑤,沈恒祥,劉宜思
    2021年第4期
    摘要
    引用本文
    摘 ? 要:采用正交試驗對鋼-植物混雜纖維輕骨料混凝土(Steel-plant Fibre Hybrid Lightweight Aggregate Concrete,SPFLC)的抗壓強度、抗拉強度、抗剪強度和導熱性能進行了研究,并使用Matlab軟件進行了多元線性回歸分析,得到了SPFLC力學性能與導熱性能的預測模型。結果表明:陶粒摻量對SPFLC的抗壓強度、抗拉強度、抗剪強度和導熱性能均有高度顯著影響,對抗拉強度的貢獻率最大為67.48%;陶砂摻量對SPFLC的抗拉強度幾乎無影響,對抗壓強度的貢獻率最大為49.72%;鋼纖維摻量對SPFLC的抗壓強度和抗剪強度有高度顯著影響,對抗剪強度的貢獻率最大為42.36%;植物纖維摻量對SPFLC的力學性能和導熱性能均有高度顯著影響,對抗拉強度的貢獻率最大為26.61%,且隨著植物纖維摻量的增加,導熱系數最大下降了23.7%;建立的SPFLC力學性能與導熱性能預測模型的精度較高。 Abstract: The compressive strength, tensile strength, shear strength and thermal conductivity of steel-plant hybrid fiber lightweight aggregate concrete(SPFLC) were studied by orthogonal tests. The prediction model of mechanical properties and thermal conductivity of SPFLC were obtained by multiple linear regression analysis with Matlab software. The results show that the ceramsite content has a highly significant influence on the compressive strength, tensile strength, shear strength and thermal conductivity of SPFLC, and the maximum contribution rate to tensile strength is 67.48%. The content of ceramic sand has almost no influence on the tensile strength of SPFLC, and the maximum contribution rate to compressive strength is 49.72%. The steel fiber content has a highly significant influence on the compressive strength and shear strength of SPFLC, and the maximum contribution rate to shear strength is 42.36%. The plant fiber content has a highly significant influence on the mechanical and thermal properties of SPFLC, among which the contribution rate to tensile strength is up to 26.61%, and the thermal conductivity decreases by 23.7% with the increase of plant fiber content. The prediction models of mechanical properties and thermal conductivity of SPFLC have a high accuracy.
    黃曉雯,龐建勇,王鳳瑤,等.混雜纖維輕骨料混凝土力學與導熱性能研究[J].混凝土與水泥制品,2021(4):55-59. HUANG X W,PANG J Y,WANG F Y,et al.Study on Mechanical and Thermal Conductivity of Hybrid Fiber Lightweight Aggregate Concrete[J].CHINA CONCRETE AND CEMENT PRODUCTS,2021(4):55-59.
    預制道面板用活性粉末混凝土性能的影響研究
    預制道面板用活性粉末混凝土性能的影響研究
    • 閻西康1,溫家鵬1,杜 闖1,周 明1,杜二偉2,趙國良3,陳 曉4
    2021年第4期
    摘要
    引用本文
    閻西康,溫家鵬,杜闖,等.預制道面板用活性粉末混凝土性能的影響研究[J].混凝土與水泥制品,2021(4):60-63. YAN X K,WEN J P,DU C,et al.Study on the Performance Influence of Reactive Powder Concrete for Prefabricated Road Panels[J].CHINA CONCRETE AND CEMENT PRODUCTS,2021(4):60-63.
    纖維增強自密實混凝土高溫性能研究綜述
    纖維增強自密實混凝土高溫性能研究綜述
    • 王 涵1,劉心潔2,王 聰1,程樹良3,辛亞軍1
    2021年第4期
    摘要
    引用本文
    摘 ? 要:基于纖維增強機理和混凝土高溫爆裂破壞機理,概述了自密實混凝土(Self-compacting Concrete,SCC)的高溫爆裂現象,從抗壓強度、彎曲性能、彈性模量三個方面總結了國內外關于纖維增強SCC高溫力學性能的研究現狀與成果,在此基礎上,指出了尚未解決的問題以及尚待深入研究的內容。 Abstract: Based on the mechanism of fiber reinforcement and high temperature burst failure of concrete, the high temperature burst phenomenon of self-compacting concrete(SCC) is summarized. The current research status and results of high temperature mechanical properties of fiber-reinforced concrete (SCC) at home and abroad are summarized from three aspects of compressive strength, flexural properties and elastic modulus, and on this basis, the unsolved problems and the contents to be further studied are put forward.
    王涵,劉心潔,王聰,等.纖維增強自密實混凝土高溫性能研究綜述[J].混凝土與水泥制品,2021(4):64-68. WANG H,LIU X J,WANG C,et al.Summary of Research on High Temperature Performance of Fiber Reinforced Self-compacting Concrete[J].CHINA CONCRETE AND CEMENT PRODUCTS,2021(4):64-68.
    上一頁
    1

    關注《混凝土與水泥制品》

    總訪問量 468,401   網站統計

    官方微信公眾號關閉
    蘇州混凝土水泥制品研究院有限公司

    關于我們    |    聯系我們    |    訂購雜志    |    回到頂部

    版權所有:中國混凝土與水泥制品網  蘇ICP備10086386號   網站建設:中企動力 蘇州

    版權所有:中國混凝土與水泥制品網

    蘇ICP備10086386號

    網站建設:中企動力 蘇州

    国产偷窥摄综合色区
      <table id="qrkot"><ruby id="qrkot"></ruby></table>
    1. <acronym id="qrkot"></acronym>
    2. <tr id="qrkot"><s id="qrkot"></s></tr>
    3. <table id="qrkot"><option id="qrkot"></option></table>
    4. <big id="qrkot"><ruby id="qrkot"></ruby></big>
    5. <track id="qrkot"></track>